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Goal:

d To develop quantifiable end-of-life prediction
capability for stationary power source systems in

backup power applications to improve dependability
and reliability in services.

Technical Goal & Objective

Objective:

 To develop a practical and reliable life prediction
tool for VRLA batteries used in energy storage
backup power applications via advanced computer
modeling to enable timely replacement of batteries
while reducing inspection and maintenance costs.
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? End-of-Life Determination and Issues
O Prediction of the End-of-Life (EOL) of a stationary battery

system in service is very difficult, expensive, and

destructive to the system.

d Critical to establish system reliability, dependability, and
warranty.

 Techniques to determine remaining discharge capacity
are highly desired, especially without removing the
system from service to perform a measurement.

O Can we functionally relate EOL to any easily measurable
quantities?

O Can we functionally relate these measurements to
quantities that are logically computable because of
electrochemical phenomenology?

d Combination of some or all of above. @ -
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External Factors (Duty
Cycle)
Environment/Site
Conditions
Temperature

Thermal Management
RMS AC Ripple
Discharge and Charge
Regimes

Discharge Frequency
Depth of Discharge vs. Time
Float Charge Voltage
Float Current

coo00 Ooopoo O

Critical Factors that Influence
VRLA Battery Life

Intrinsic Cell
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Characteristics
Cell Design
Battery Responses

Battery Performance vs.
Operating Temperature

Discharge Capacity
Cell Impedance

Conductivity & Contact
Resistance

Grid Corrosion & Rate

Recombinant Behavior &
Water Loss

= Impacts from both standby and duty

cycle modes need to be captured
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}.‘ (Traditional) Sequential Path to

Battery Life Prediction

O Gather readily available data

1 Commence study to establish which
phenomenological measures are most relevant

 Establish what data are desirable and prepare test
plan

1 Commence battery testing

1 Commence analysis of available data
“ Computation of phenomenological measures
** Development of suitable mathematical algorithm
“* Modeling and prediction

O Assess model performance and validate

= Time Consuming & Inefficient @Sandia
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‘ Our Approach -- Concurrent Path to
EOL Prediction

1 Development of suitable model and modeling
capability based on current understanding

*+ Use simple but practical equivalent circuit model approach
to develop performance prediction capability

*» Use artificial neural network approach to develop adaptive
life prediction capability over a wide range of conditions

[ Collection of relevant data
*» Test protocols and test plan

U Prediction and validation
+» Criteria
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# Equivalent Circuit Model (ECM)

d A simple equivalent circuit model (ECM) can
describe complicated behaviors and responses in
an electrochemical system.

 Can provide some insightful phenomenological
understanding of the system performance.

L A simple ECM is currently used in this work:
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?‘ Artificial Neural Network (ANN):

Motivation

O Data characterizing EOL phenomena can be extremely

complex and the underlying mechanisms might not be
completely understood or impossible to fully describe.

The simple equivalent circuit model may not be sufficient for
complicated duty and service cycles such as those in the
stationary applications, which might induce EOL mechanism
change over a long service period and wide range of
conditions.

Once trained, the adaptive capability of ANNs allows for the
incorporation of new data to improve fidelity, which may
come from previously unknown degradation mechanisms.

ANNs can provide functional relationships for use conditions
that were not part of the initial training set. Interpolation
between trained conditions and some limited extrapolation is

possible. @ Sandia
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We seek to create a
map that simulates
an experimental
input/output
relation.

This is accomplished through a learning process. @ ik

Artificial Neural Network:
Fundamentals/Training

Given:

« Correct examples of input/output behavior

(exemplars) .
Xi,2j,] =1,..,n

* The artificial neural network (ANN) framework

with parameters p

A
* N ()
N

— )

 We seek to train the ANN (optimize the
parameters, p) to simulate the behavior of the

exemplars.
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?‘ Artificial Neural Network:

Modeling Approach

4 Investigate the capacity loss as a function of
discharge rate and temperature.

 Create individual ANN models at selected
temperatures (20, 30, 40 and 50°C) and discharge
rates (C/1 to C/3 in steps of 0.25).

U Models are splined together to create an overall
model for each discharge rate and temperature
condition.

O Interpolation and a limited amount of extrapolation
was performed

(J ANN model is shown to reflect the overall trend of
the underlying data
@ ﬁg?igir?al
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ECM Approach:

Cell Impedance Changes with Cycles
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ECM Results:

Temperature Dependence of
Discharge Cell Voltage
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ECM Results:
Cell Voltage versus SOC in Cycles

> 4 Determining Available Capacity through Cycles
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ECM Prediction:

Cycle Life Predicted versus Measured

Capacity, Ah

Nominal 6.65Ah VRLA
single cell with more than
40% overcharge through
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Artificial Neural Network:
Capacity Discharge Modeling

90
| | —— Model
g 80 ® ANN Prediction
]
i - -
< 2 6o}
-5' <
'®) E 50}
i - O
< S 40}
o
o 30}
07,0 C/3 2%0 40 60 80 100
' Actual AhOut, Ah
ANN Model Model Error

Sandia
National
Laboratories



Summary

¥>

A simple equivalent circuit model can be used to
describe VRLA performance.

4 Including two degradation processes (i.e., dryout and
grid corrosion) in the model, we can predict life under
duty cycles.

1 Temperature dependence of battery performance can be
modeled. Thermal impact on life needs to be addressed.

4 Preliminary predictive data can be generated for artificial
neural networks (ANN) interpretation of battery life.

(d ANNs were used to study the capacity loss of a lead acid
battery as a function of temperature and discharge rate.

d This approach seems to enable the integration of ECM
and ANN into an effective and practical tool for VRLA
battery life prediction in stationary applications.
OED
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} Future Work & Work in Progress

d Use limited cycle performance data to validate simple
equivalent circuit model predictions.

 Collect relevant data for float charge conditions to
facilitate model development and modification.

O Integrate equivalent circuit model with ANN for
adaptive parameter correlation and training to develop
an ANN model for life prediction.

J Future ANN work will consider:

“ Exploring the relationship of capacity loss with respect
to temperature, time, charge/discharge rate and other
critical parameters

* Conducting Principal Component Analysis to identify
critical parameters for degradation during standby and

duty cycle periods.
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